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in time derivatives, which describes strings with large R-charge. In the field theory we

consider holomorphic operators with large winding numbers around the quiver and find,

interestingly, that, after certain simplifying assumptions, they can be described effectively

as strings moving in a particular metric. Although not equal, the metric is similar to the

one in the bulk. We find it encouraging that a string picture emerges directly from the

field theory and discuss possible ways to improve the agreement.
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1. Introduction

The AdS/CFT correspondence [1] gave a precise example of the conjectured relation [2]

between the large N limit of gauge theories and string theory. The most studied model

is N = 4 SYM, with gauge group SU(N) and coupling gYM. In its simplest form, the

correspondence establishes that, in the large N -limit, keeping λ = g2
YMN fixed, this theory

is the same as free IIB strings on AdS5 × S5, with N units of RR 5-form flux. The radius

R of AdS5 × S5 is given by R/ls = λ
1
4 where ls is the string length. The effective string

tension is therefore λ− 1
2 . In the limit λ → ∞ the worldsheet theory becomes classical and

can be easily studied. On the other hand, the field theory simplifies in the opposite limit,

λ → 0, since then it becomes perturbative. This makes the correspondence very powerful

but at the same time difficult to study. In particular, it does not elucidate the point of how
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a string description can emerge from a field theory (see [3] for a discussion). An important

step in that direction was made in [4] where it was shown how this correspondence can

be established for certain ultrarelativistic strings, i.e. strings whose kinetic energy is much

larger than their mass. In a related paper [5], the string side of the calculation was under-

stood from a semi-classical point of view which allowed a generalization of [4] to multispin

string states in [6, 7] (see [8, 9] for a review and [10] for previous related work). The cal-

culation can also be generalized thanks to the observation of [11] that the one-loop scalar

dilatation operator can be interpreted as a Hamiltonian of an integrable SO(6) spin chain.

Using a Bethe ansatz method to solve a subsector of the spin chain, in [12, 13] a remark-

able agreement was found between energies of various string solutions and eigenvalues of

the dilatation operator representing dimensions of particular SYM operators. Moreover,

integrable structures appear for certain rigid-shape rotating string configurations [14, 15]

and can be mapped [16, 17] to the integrable structure of the spin chain.

Another step was made in [18], where it was shown that one can take the ultrarela-

tivistic limit directly in the string action1. The resulting, reduced action is a sigma model

which turns out to be precisely the semiclassical coherent state action describing the field

theory spin chain (in an SU(2) subsector). This makes obvious how a sigma model de-

scription of operators can emerge from a field theory as an effective description of very

long operators. These ideas can be cast also in the framework of integrable models as

later shown in [22]. The results are also useful in understanding higher orders of the semi-

classical approximation [23], other subsectors [24 – 31] including open strings [32], and also

quantum corrections [33]. It could be useful also in understanding 1/N corrections as the

ones discussed in [34].

Moreover, the relation between spin chains and gauge theory is quite generic and in fact

it was already noted in QCD [35] implying that these ideas have wide applicability. There-

fore, it is natural to wonder if they can be extended to other examples of the AdS/CFT

correspondence, for example, with less than four supersymmetries. Examples with at least

one supersymmetry are generically2 given by IIB backgrounds of the form AdS5×X5, where

X5 is a five dimensional Sasaki-Einstein manifold. The dual superconformal theories are

quivers, arising from the low energy excitations of D3-branes at Calabi–Yau singularities.

Until recently, the only examples where the metric on X5 was explicitly known were the

homogeneous manifolds S5 and T 1,1. The latter case, discussed in detail by Klebanov and

Witten [39], gives the paradigmatic example of N = 1 AdS/CFT.

However, one year ago, Gauntlett, Martelli, Sparks and Waldram found an infinite

class of inhomogeneous Sasaki–Einstein metrics on S2 × S3 [40 – 42] which are labeled by

two integers 0 ≤ q ≤ p, and are usually called Yp,q metrics. The corresponding Calabi–

Yau cones, are toric, meaning that there is an effectively acting U(1)3 isometry. The toric

description of the geometries was given in [43] which allowed [44] to find the superconformal

gauge theories dual to Type IIB on AdS5 × Yp,q.

1See [19, 20] for alternative approaches and [21] for a discussion of supersymmetry in the ultrarelativistic

limit.
2This does not include the Maldacena-Nuñez solution [36] which uses a different approach. See [37, 38]

for more generic solutions.
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Once the superconformal field theories are known, it’s possible to compute the anoma-

lous dimensions of the chiral fields applying the general a-maximization technique of [45],

which relies on general properties of supersymmetric theories [46] and works independently

of AdS/CFT. These anomalous dimensions are directly related, in the supergravity dual, to

the volume of the dual Sasaki–Einstein manifold, as well as the volumes of supersymmetric

submanifolds. In fact, [47] later found the geometric analog of a-maximization, i.e. a gen-

eral way of computing these volumes for toric Sasaki–Einstein manifolds in any dimension,

bypassing the need of an explicit knowledge of the metric.

In a further development [48], a relation was pointed out between toric quivers and

dimers, that leads [49] to a general method for obtaining the corresponding brane se-

tups [50]. This ’brane tiling’ technique is connected to a correspondence between the sta-

tistical mechanics of dimers and topological strings on Calabi-Yau’s [51], and significantly

generalizes previously known similar constructions [52, 53].

In the present paper similar periodic representations of quivers are considered, in

particular, the full mesonic chiral ring of toric gauge theories is naturally encoded in one-

cycles of the torus where the quiver itself is drawn.

Another generic feature of quivers associated to toric geometries is that they always

admit an exactly marginal deformation analogous to the β-deformation of N = 4 SYM [54],

as was shown in [55], using the techniques of [54, 56]. This deformation leaves the toric

U(1)2F × U(1)R isometry untouched. In [57] a very interesting way of constructing the

gravity side of this kind of deformations has been found. The semiclassical sector of the

correspondence [58] and integrability properties [59] have been studied.

The knowledge of a general class of geometries should allow the construction of non-

conformal examples of the correspondence, in the spirit of the Klebanov-Strassler solu-

tion [60]. Progress in this direction was done in [61 – 65].

In this paper we are interested in improving the understanding of the correspondence

in these new examples. We proceed in steps. First we establish a correspondence between

massless geodesics and large R-charge chiral primary operators in the field theory. After

that, following [4], we consider excited strings whose mass is small compared to their

kinetic energy. When the string has few excitations (of certain types) we can find the

corresponding operators in the field theory. For a large number of excitations, however, we

need a way to obtain a spin chain description of the operators. This is difficult since the

theory is not in a perturbative regime. We content ourselves with analyzing the mixing

between operators induced by the superpotential and show that they lead to a sigma model

action which has similar properties as an action that can be derived directly form the string

side of the correspondence. The sigma models are not the same but we suggest that they

should have the same infrared limit (in the worldsheet sense). So, we can argue that we

indeed were able to find a string action emerging from the field theory. The mapping from

one side of the correspondence to the other is that long paths in the quiver correspond to

strings. If one draws the paths in a torus then the direction in which the path moves is

directly related to the position of the string in the bulk.

The organization of this paper is as follows: In section 2 we analyze strings moving

in the Yp,q manifolds. We find massless geodesics paying special attention to the ones
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corresponding to chiral primaries (long) operators in the quivers. We then consider semi-

classical fast moving strings, in the limit of [18]. The Sasaki-Einstein geometry seen by

these strings is naturally parameterized by a non relativistic effective action, that keeps all

the information about the Sasaki–Einstein metric.

In section 3 the BPS sector of the field theory is analyzed. The full mesonic chiral ring

is constructed for a general Yp,q gauge theory, exploiting general features of toric quivers.

We reobtain the results on BPS geodesics and find the natural ranges of the coordinates

parameterizing the Yp,q manifolds.

In order to reconstruct the full string background, it is necessary to go beyond the

BPS sector and consider chiral non BPS operators. In section 4 we show the existence

of a special point on the conformal manifold where some coefficents of the superpotential

vanish. At that point the chiral ring is enhanced and a large class of holomorphic operators

becomes BPS3. For long operators, non trivially, this class includes the extended semiclas-

sical strings, as can be expected from the string side. The existence of a special point with

enhanced chiral ring and symmetry (noticed also in [55] in some particular examples) is an

exact result that we expect to be a general feature of superconformal quiver gauge theories

and thus of AdS/CFT with critical string theory.

In section 5 we construct a spin chain Hamiltonian for the Yp,q quivers, considering

a simplified approach consisting in studying the mixings between chiral operators induced

by the superpotential terms in the Lagrangian. In this way, we are able to reconstruct an

S2 ×S3 geometry from the chiral semiclassical operators in the field theory. Even with the

mentioned simplifications, the metric found is very similar to the original Sasaki–Einstein

metric. More precisely, we find a Kähler metric on the base but the metric is not Einstein.

We suggest that the metric may flow to an Einstein metric in the infrared of the world-sheet.

In section 6, which can be read independently of section 4 and 5, we extend the results

of section 3 in a different direction. Instead of considering extended strings we consider

non-BPS massless geodesics. We find a class of operators that we conjecture to correspond

to a generic non BPS geodesic, and test the idea for massless strings moving along a small

perturbation of a BPS geodesic. For short operators, this leads to a proposal for the,

generically non protected, operators dual to all supergravity states, i.e. generic Kaluza-

Klein harmonics on the transverse Einstein manifold.

Finally we give our conclusions in section 7.

2. Strings moving in the Yp,q manifold

In this section we study semiclassical strings moving in the AdS5 × Yp,q manifold whose

metric is [41]:

ds2 = −dt2 cosh2ρ + dρ2 + sinh2ρ dΩ2
3 + ds2

p,q (2.1)

3This is the class of operators that we call ”holomorphic sector”. In the case of N = 4 this sector is

the well known SU(3) subsector. We don’t discuss the closure of the sector in the gauge theories, but we

expect that for long operators this sector becomes closed, as in N = 4, Minahan : 2004ds.
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ds2
p,q =

1 − y

6

(

dθ2 + sin2 θdφ2
)

+
dy2

6p(y)
+

q(y)

9
(dψ − cos θdφ)2 (2.2)

+w(y) [dα + f(y) (dψ − cos θdφ)]2 (2.3)

with the functions

w(y) = 2
a − y2

1 − y
, q(y) =

a − 3y2 + 2y3

a − y2
, f(y) =

a − 2y + y2

6(a − y2)
, (2.4)

and

p(y) =
w(y)q(y)

6
=

a − 3y2 + 2y3

3(1 − y)
(2.5)

The coordinates span the range:

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π, 0 ≤ α ≤ 2π`, y1 ≤ y ≤ y2 (2.6)

The constant a appearing in the metric as well as the constants y1,2 and ` which determine

the range of variation of the coordinates can all be written in terms of the integers p and

q that define the manifold:

y1,2 =
1

4p

(

2p ∓ 3q −
√

4p2 − 3q2
)

(2.7)

` =
q

3q2 − 2p2 + p
√

4p2 − 3q2
(2.8)

a = 3y2
1 − 2y3

1 (2.9)

An important point is that y1,2 are zeros of the function p(y) appearing in the metric. It

can be seen that, to avoid a conical singularity at y = y1,2, we need p′(y1,2) = ±2y1,2 which

is satisfied (choosing a minus sign). We note for further use that there is a third zero of

p(y) given by y3 = 3
2 − y1 − y2. Various useful properties of these functions and the metric

can be found in the original paper [41] and are collected in an appendix for completeness.

2.1 Massless geodesics

We consider massless geodesic in the reduced metric

ds2 = −dt2 + ds2
p,q = −dt2 + gabdxadxb (2.10)

where ds2
p,q = gabdxadxb is the metric of the Sasaki-Einstein manifold and t is the global

time in AdS5. The massless point-like string is sitting at ρ = 0 in the metric (2.1) and the

motion is only in the internal manifold.

The action for the motion of a point-like string is

S =

√
λ

2

∫

dτ
(

−ṫ2 + gij ẋ
aẋb

)

(2.11)

where
√

λ = (R/ls)
2 is the effective string tension. We include it for completeness but the

results do not depend on the tension since the strings are point-like. We need to solve the

equations of motion subject to the constraint

−ṫ2 + gabẋ
aẋb = 0 (2.12)
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The equation of motion for t is solved by t = κτ and therefore the action reduces

S =

∫

dτL =

√
λ

2

∫

dτ
(

gabẋ
aẋb

)

(2.13)

=

√
λ

2

∫

dτ

{

1 − y

6

(

θ̇2 + sin2 θφ̇2
)

+
1

w(y)q(y)
ẏ2 +

q(y)

9

(

ψ̇ − cos θφ̇
)2

(2.14)

+w(y)
[

α̇ + f(y)
(

ψ̇ − cos θφ̇
)]2

}

(2.15)

namely free motion in the Sasaki-Einstein manifold. The momentum Pt conjugate to t is

the energy of the string and therefore is equal to the conformal dimension ∆ of the dual

operator:

∆ = Pt =
√

λκ (2.16)

We can also introduce the other conjugate momenta as

pa =
∂L
∂ẋa

(2.17)

and the Hamiltonian which is given by

H =
1

2
gabpapb (2.18)

From the action we see immediately that the momenta Pφ, Pψ and Pα are conserved

quantities. This is a consequence of the SU(2) × U(1) × U(1) isometry since Pφ is the

third component of the SU(2) angular momentum and Pψ, Pα are associated to the U(1)

factors. There is a further conserved quantity corresponding to the total SU(2) angular

momentum given by:

J2 = P 2
θ +

1

sin2 θ
(Pφ + cos θPψ)2 + P 2

ψ (2.19)

The momenta in terms of the velocities are given by

1√
λ

Py =
1

6p(y)
ẏ (2.20)

1√
λ

Pθ =
1 − y

6
θ̇ (2.21)

1√
λ

(Pφ + cos θPψ) =
1 − y

6
sin2 θφ̇ (2.22)

1√
λ

(Pψ − f(y)Pα) =
q(y)

9

(

ψ̇ − cos θφ̇
)

(2.23)

1√
λ

Pα = w(y)
(

α̇ + f(y)
(

ψ̇ − cos θφ̇
))

(2.24)

In terms of the momenta the Hamiltonian can be written as

√
λH =

λ

2
κ2 =

1

2
∆2 =

1

2

{

6p(y)P 2
y +

6

1 − y

(

J2 − P 2
ψ

)

+
1 − y

2(a − y2)
P 2

α (2.25)

+
9(a − y2)

a − 3y2 + 2y3

(

Pψ − a − 2y + y2

6(a − y2)
Pα

)2
}

(2.26)

– 6 –



J
H
E
P
1
0
(
2
0
0
6
)
0
5
1

where we also used the constraint (2.12) to relate H to κ and further used (2.16) to relate

κ and ∆. As expected the relation between the conformal dimension ∆ and the momenta

does not involve the tension
√

λ.

The only non trivial equation of motion we need to solve now is that of y(τ) which is

simply a one dimensional motion in a potential as follows from the conservation of H and

the fact that Py ∝ ẏ/p(y). Before proceeding it is useful to introduce the R-charge:

QR = 2Pψ − 1

3
Pα (2.27)

which gives, after some algebra,

∆2 =

(

3

2
QR

)2

+
1

6p(y)
(Pα + 3 y QR)2 (2.28)

+6p(y)P 2
y +

6

1 − y

(

J2 − P 2
ψ

)

where we used the function p(y) that was defined in (2.5). As we said this last equation

should be understood as an equation of motion for y(τ).

The full set of geodesics moving only in the transverse SE manifold is completely

described by eq. (2.28). We note that the set of geodesics on a five dimensional manifold

is itself a manifold with eight dimensions; in the case of S5, for instance, this set is the

manifold SO(6)/(SO(2)×SO(4)). Since from (2.19) J2 ≥ P 2
ψ, all solutions have ∆ ≥ 3

2QR.

We want now to restrict to solutions where this bound is saturated. These geodesics

correspond to chiral primary, or BPS, operators that will be analyzed in the next section.

From (2.28) it is clear than in order to have ∆ = 3
2QR we must require

Py = 0, J2 = P 2
ψ, (2.29)

The first equation implies y = y0 is constant. The constant y0 should be set to the minimum

of ∆2, namely

y0 = − Pα

3QR
(2.30)

This ensures that the equation of motion for y is satisfied and at the same time implies

∆ = 3
2QR. The restriction however is that, to obtain a geodesic, we need:

y1 ≤ − Pα

3QR
≤ y2 (2.31)

In this sense, y1,2 can be thought as defining the range of variation of Pα/QR.

To summarize, for all these BPS geodesics we obtain:

Pα = −3y0QR, J =
1

2
(1 − y0)QR (2.32)

and the y0 independent relations

∆ =
3

2
QR, QR = 2J − 1

3
Pα. (2.33)

– 7 –
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The last equality follows from the definition of QR, namely eq. (2.27), and the fact that

J = Pψ for these geodesics. Together with the first relation in (2.32) it implies the second

one, namely J = 1
2 (1 − y0)QR.

Using the definitions of the momenta in terms of the velocities one can see that the

geodesics in question are simply given by

y = y0, θ = θ0, φ = φ0, α̇ +
1

6
ψ̇ = 0 (2.34)

which suggests introducing a new angle β through

β = 6α + ψ, ψ̃ = ψ (2.35)

This implies

Pβ =
1

6
Pα (2.36)

P
ψ̃

= Pψ − 1

6
Pα =

1

2
QR (2.37)

Now, the geodesics are such that β̇ = 0. Note also that ψ̃ = ψ is now conjugate to the

R-charge.

Concluding, a four dimensional subset of geodesic is BPS, and corresponds, as ex-

pected, to point-like strings moving only along the R-charge direction, or ψ̃ direction. In

section 3 we reconstruct these BPS geodesics from chiral primaries in the quivers. In

section 6 we will study small deviations from the BPS case, corresponding to ∆ > 3
2 QR.

2.2 Reduced action for strings with large R-charge

In this section we consider classical strings which move with large angular momentum

corresponding to field theory operators with large R-charge. Such strings move fast in the

ψ direction as in the previous section but now we do not use the approximation that the

string is small. Any five-dimensional Sasaki–Einstein metric can be written in the following

form

ds2 = −dt2 +
1

6
gijdxidxj +

1

9
(dψ + Aidxi)2 (2.38)

where gij is a local Kähler–Einstein metric on the base, parameterized by the coordinates

xi. Both gij and Ai depend only on the four coordinates xi. The external derivative of the

one form Aidxi is proportional to the Kähler form of the four dimensional base. It also

completely specifies the Kähler form of the Calabi-Yau cone over the SE manifold.

Now we introduce a coordinate ψ1 = ψ − 3t. The metric becomes

ds2 =
2

3
dt(dψ1 + Aidxi) +

1

9
(dψ1 + Aidxi)2 +

1

6
gijdxidxj (2.39)

If we choose t = κτ we can write the Polyakov action

S =
1

2

∫

2

3
κ(∂τψ1 + Ai∂τx

i) +
1

9
(∂τψ1 + Ai∂τx

i)2 +
1

6
gij∂τx

i∂τxj (2.40)

−1

9
(∂σψ1 + Ai∂σxi)2 − 1

6
gij∂σxi∂σxj (2.41)

– 8 –
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and the conformal constraints

0 =
1

3
κ(∂τψ1 + Ai∂τxi) +

1

9
(∂τψ1 + Ai∂τx

i)2 +
1

6
gij∂τxi∂τx

j (2.42)

+
1

9
(∂σψ1 + Ai∂σxi)2 +

1

6
gij∂σxi∂σxj (2.43)

0 =
2

3
κ(∂σψ1 + Ai∂σxi) +

1

9
(∂τψ1 + Ai∂τx

i)(∂σψ1 + Ai∂σxi) +
1

6
gij∂τxi∂σxj (2.44)

In this system of coordinates the string moves slowly (which means it moves almost at the

speed of light in the original ones). We therefore consider the limit [18]

∂τX → 0, κ → ∞, κ ∂τX fixed (2.45)

where X denotes all coordinates, ψ1 and xi. What we did is to focus on strings that move

very fast in the original coordinate ψ and therefore carry a large R-charge. The reason is

that we want to match those strings with large R-charge field theory operators.

Going back to our problem, in that limit the conformal constraints reduce to

0 = κ(∂τψ1 + Ai∂τx
i) +

1

2
gij∂σxi∂σxj (2.46)

0 = ∂σψ1 + Ai∂σxi (2.47)

Taking the limit in the action and using the constraint (2.47) we get

S =

∫

1

3
κ(∂τψ1 + Ai∂τxi) − 1

12
gij∂σxi∂σxj (2.48)

which is the final form of the reduced action describing strings with large R-charge.

We can now specify this general derivation to our case of interest, the Yp,q metrics.

Using the coordinates discussed at the end of the previous subsection, (θ, φ, y, β), the local

Kähler–Einstein metric gij and the U(1)-fibration Ai are

gijdxidxj = (1 − y)(dθ2 + sin2 θdφ2) +
dy2

p(y)
+ p(y)(dβ − cos θdφ)2 (2.49)

Aidxi = −ydβ − (1 − y) cos θdφ (2.50)

It should be noticed that the metric (2.49) is valid only locally, and has orbifold singularities

at the zeros of p(y).4 The constraint (2.47) becomes

∂σψ1 − cos θ∂σφ = y (∂σβ − cos θ∂σφ) (2.51)

and the effective action (2.48) takes the explicit form

S =
√

λ

∫

1

3
κ(∂τψ1 − y∂τβ − (1 − y) cos θ∂τφ) (2.52)

− 1

12

[

(1 − y)
(

(∂σθ)2 + sin2 θ(∂σφ)2
)

+
(∂σy)2

p(y)
+ p(y)(∂σβ − cos θ∂σφ)2

]

(2.53)

4We note also that the one form Aidxi does not depend on p(y); as a consequence the Kähler forms of

the four dimensional base and of the metric cone over the five-manifolds do not depend on the precise form

of p(y). In section 5 we derive a metric from the spin chain which differs from (2.49) only in the form of

p(y) and for Ai gives the same result as (2.50).
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where we restored the factor (R/ls)
2 =

√
λ in front of the action. We can immediately

identify the following conserved quantities

Pψ1 =
1

3

√
λκ

∫

dσ =
2π

3

√
λκ (2.54)

Pβ = −1

3

√
λκ

∫

dσ y (2.55)

Pφ = −1

3

√
λκ

∫

dσ (1 − y) cos θ (2.56)

H =

√
λ

12

∫

dσ
[

(1 − y)
(

(∂σθ)2 + sin2 θ(∂σφ)2
)

+ (2.57)

(∂σy)2

p(y)
+ p(y)(∂σβ − cos θ∂σφ)2

]

(2.58)

where Pψ1 is (half) the R-charge, Pβ , Pφ, are the U(1)F and the third component of

the SU(2) charges respectively. Finally H is the Hamiltonian which corresponds to ∆ −
3
2QR in the field theory. Furthermore, if we remember that Pψ1 = P

ψ̃
, we see that the

relations (2.32), (2.33) are satisfied at each value of σ implying that each point of the

string moves approximately along a BPS geodesic. As expected, H vanishes precisely when

all the four local coordinates do not depend on σ. In this case one recovers the results

of the previous subsection. It is useful to note that if we use the coordinate t = τ/κ and

replace κ by the R-charge QR = 1
2Pψ1 the reduced action can be written as

S =
QR

4π

{
∫

(∂tψ1 − y∂tβ − (1 − y) cos θ∂tφ) (2.59)

−4π2

9

λ

Q2
R

[

(1 − y)
(

(∂σθ)2 + sin2 θ(∂σφ)2
)

+
(∂σy)2

p(y)
+ p(y)(∂σβ − cos θ∂σφ)2

]}

We see that the corrections introduced by a sigma dependence of the coordinates, namely

for an extended string, are small for large R-charge as expected. The result is valid for

large λ but a naive extrapolation to λ = 0 suggests that the corrections vanish in that

point, a fact that we use later.

We conclude this subsection by noting that one can write the reduced action (2.53) in

the following general form:

S = −iκ

∫

(

ża∂aK − ˙̄z
ā
∂āK

)

− 1

2

∫

∂ab̄K ∂σza∂σ z̄b̄ (2.60)

where we introduced two complex variables za=1,2 and a Kähler potential K(z1z̄1̄ + z2z̄2̄).

In terms of the original variables they are:

z1 = sin(
θ

2
) e−i 1

2
(β−φ)

3
∏

i=1

|y − yi|
1

4yi (2.61)

z2 = cos(
θ

2
) e−i 1

2
(β+φ)

3
∏

i=1

|y − yi|
1

4yi (2.62)

(2.63)
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where y1 < y2 < y3 are the three roots of p(y) = 0 already introduced in (2.9). This

relation defines complex coordinates only locally since for example the periodicity of β is

not 2π. We see that ρ = z1z̄1̄ + z2z̄2̄ is a function of y only. This means that the (local)

Kähler potential is also a function of y and turns out to be given by

K =
1

6

3
∑

i=1

1 − yi

yi
ln |y − yi| (2.64)

With these definitions it easy check that (2.60) is equivalent to (2.53). In doing so it is

useful to note that

∂K

∂y
= −(1 − y)

3p(y)
(2.65)

∂ρ

∂y
= − ρ

p(y)
(2.66)

The form of the action (2.60) means simply that the base of the Sasaki-Einstein manifold

is locally Kähler with complex coordinates z1,2 and Kähler potential K. The fact that K

depends only on ρ = z1z̄1̄ + z2z̄2̄ means that there is an U(2) = SU(2) × U(1) isometry.

Actually this fact supplemented by the condition that the metric is Einstein completely

determines the reduced action (up to the constants y1,2 and the couplings).

3. The correspondence in the BPS sector

We now want to study the various operators dual to the semiclassical strings moving on the

Yp,q manifolds. Since we consider strings without AdS angular momenta, the operators are

scalars constructed only with the matter bifundamental fields. Moreover, if the string is

moving fast only along the ψ direction, as is the case for strings described by the effective

action of section 2.2, the operators will be holomorphic, or chiral, i.e. products of chiral

bifundamentals.

In this section we restrict to chiral primaries, or BPS operators. We will at first focus

on the generators of the mesonic chiral ring. ’Mesonic’ means that these operators are

constructed taking the trace of products of bifundamental fields; in order to be gauge

invariant each of these operators has to correspond to a loop in the quiver. Then we

describe a generic BPS operator. This study reobtains our previous geometric results on

BPS geodesics, and constitutes a first step towards the description of the holomorphic

operators dual to semiclassical extended strings. Even if we consider the Yp,q models, we

will uncover generic features of toric quivers.

We refer to [44] for the description of how the superconformal field theories are con-

structed. Table 1 gives the values of the R-charges QR, the SU(2)-spin J and the U(1)

flavor charges QF for all the bifundamental fields present in a generic Yp,q quiver5. As is

well known, for chiral operators there is a simple relation between the R–charge QR and

5In the case of Y2,1, for which the superconformal field theory was constructed in [66], the values of the

R-charges were computed in [67].
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Field number QR U(1)B QF

Y p + q (3q2 − 4p2 + 2pq + (2p − q)
√

4p2 − 3q2)/3q2 p − q −1

Z p − q (3q2 − 4p2 − 2pq + (2p + q)
√

4p2 − 3q2)/3q2 p + q +1

Uα p (4p2 − 2p
√

4p2 − 3q2)/3q2 −p 0

V α q (3q2 − 2pq + q
√

4p2 − 3q2)/3q2 q +1

Table 1: Charges of the bifundamental fields present in the Yp,q quivers found in [44].

the scaling dimension ∆: ∆ = 3/2QR. Since the R-charges add under multiplication of

chiral operators, the knowledge of the R-charge of the four types of bifundamental fields,

Y,Z,Uα and V α, suffices to determine the R-charge of all holomorphic operators and the

scaling dimension of all chiral primaries.

3.1 Chiral building blocks

The basic chiral operators correspond to some loops in the quiver that have been considered

in [44] in order to give a field theoretical computation of the topology of the supersymmetric

3-cycles. Moreover, the analysis of the short loops (R-charge 2 chiral ring) has been given

in [55] in order to determine the conformal manifold. We will, for the sake of clarity,

describe nevertheless in detail the various operators also here.

Let us start from some simple examples of mesonic chiral operators. The simplest

chiral single trace operators are of the form6

tr(Z U Yq U) or tr(U V Yc) (3.1)

for ’short’ loops of the quivers. For ’long loops’ of the quivers of table 2 one finds

tr(Z U V U V U Z U) (3.2)

for counter-clockwise loops, and

tr(Yq U Yq U Yc Yc) or tr(Yq U Yq Yc Yc U) or tr(Yq U Yq Yc U Yc) (3.3)

for clockwise loops. These examples are valid for Y 4,2, in general there are operators

like (3.1) of length 3 and 4, operators like (3.2) of length 2p and (3.3) of length 2p − q.

These three types of operators constitute the basic building blocks for any scalar chiral

operator. Notice that operators corresponding to ’long loops’ carry a non zero winding

number around the quivers; this winding number counts the value of the charge associated

to the U(1) flavor symmetry. Another thing that can be observed immediately is that the

baryonic charge is always vanishing for any mesonic operator (this gives the constraints on

the topology of the SUSY 3-cycles of the Sasaki-Einstein manifolds [44]). As a consequence,

we do not consider the baryonic charge in the remaining part of this paper.

6With the hope of helping in visualize the operators on the quivers, we denote by Yc the Y -fields entering

a cubic superpotential term, and by Yq the Y -fields entering a quartic superpotential term.
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Y4 4 Y4 3 Y4 2 Y4 1

Table 2: Example of the recursive construction of the Yp,q quivers, as from [44].

Because of F-terms relations only a subset of these holomorphic operators are chiral

primaries, or BPS, and have dimension ∆ = 3/2R on the whole IR conformal surface.

Let us consider the short loops, having R–charge 2. There are 2p such loops: 2q of

length 3 and p−q of length 4. Moreover, since the fields U and V transform in the spin–1/2

of the global SU(2), all the short loops are in the 1/2 ⊗ 1/2 = 0 ⊕ 1. We are thus dealing

with 4(p + q) operators. The F-term relations will imply that only 3 of them are chiral.

The explicit superpotential [44] is

W =

q
∑

i=1

εαβ(Uα
i V β

i Y2i−1 + V α
i Uβ

i+1Y2i) +

p
∑

j=q+1

εαβZjU
α
j+1Y2j−1U

β
j . (3.4)

It is important to remember that this writing is schematic, the precise coefficients multiply-

ing every SU(2)-invariant term depend on the position in the conformal surface, similarly

to the gauge couplings. The equations of motion of the Y -fields

U1
i V 2

i = U2
i V 1

i (3.5)

V 1
i U2

i+1 = V 2
i U1

i+1 (3.6)

U1
j ZjU

2
j+1 = U2

j ZjU
1
j+1 (3.7)

immediately say that the spin–0 parts are zero in the chiral ring. The equations of motion

for the ’external’ U , V , Z fields enable to ’move’ the short loops around the quiver. All

these short loops are thus equal in the chiral ring. The superconformal BPS operator is a

symmetrization over the quiver of all these short operators:

SI =

q
∑

i=1

σI
αβ(Uα

i V β
i Y2i−1 + V α

i Uβ
i+1Y2i) +

p
∑

j=q+1

σI
αβZjU

α
j+1Y2j−1U

β
j , (3.8)

where σI are the 3 Pauli matrices. Also in (3.8) the precise coefficients in front of every

SU(2)-covariant term depend on the position in the conformal surface. In conclusion there

are only 3 operators, S± and S0, with R–charge 2 and scaling dimension ∆ = 3 over the

whole conformal surface, and they transform in the spin–1 representation of SU(2). Note

that the QF charge of S is 0. The chiral operator with vanishing spin–z, S0, lies in the
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Meson spin J QR QF

S 1 2 0

L+
p+q
2 p + q − 1

3`
+p

L−
p−q
2 p − q + 1

3`
−p

Table 3: Charge assignments for the three basic mesonic fields. Notice that 2J−QR is proportional

to QF for all the operators.

chiral ring for any toric superconformal quiver and drives the exactly marginal deformation

called β–deformation [55]. For more general toric quivers, without an “accidental” SU(2)

global symmetry, BPS building blocks with non vanishing U(1) × U(1) flavor charge, like

S±, are not short: their analog are similar to the ’long’ chiral operators we are going to

study now.

Considering the winding operators we distinguish between clockwise and counter-

clockwise loops. The length-2p loop (counter-clockwise, of the form (3.2)) is made of p

U -fields, q V -fields and p − q Z-fields. The set of operators (in total 2p+q) corresponding

to this loop transform in the SU(2)-representation with spin

(

⊗p 1

2

)

⊗
(

⊗q 1

2

)

=
p + q

2
⊕ p + q − 2

2
⊕ . . . (3.9)

The . . . represent lower dimensional SU(2)-representations. All the non-maximal SU(2)-

representations in the chiral ring vanish, due to the Y -fields F-term relations. We denote

this operator L+. One thus finds that it carries spin p+q
2 and, from table 1 a non vanishing

positive U(1)F charge.

The other type of winding operators, clockwise loops of the form (3.2), are a little bit

more difficult to visualize. They have length 2p − q and are made of p Y –fields and p − q

U–fields (including U - or Z-fields in such a loop is equivalent to multiply by an S operators,

and would not be a building block). The Z- and Y -fields F-term relations imply that the

SU(2) indices have to be completely symmetrized, i.e. the BPS operators transform in

the spin-p−q
2 representation. On the other hand, V -field F-terms enable one to move the

position of the various U - and Yc-fields present in the operators of the form (3.2). This

implies that there is only one BPS clockwise loop, with J = p−q
2 , that we call L−.7

The R–charge of the long loops is computed using table 1

QR[L±] = p ± (p(2p −
√

4p2 − 3q2))/3q = p ± (q − 1

3`
) , (3.10)

where in the last equality the relation (2.8) has been used. The final results are summarized

in table 3.

7In the case of Yp,p there are two different L
−

operators. This fact does not lead to a strong enhancement

of the chiral ring, since in this case J = 0, in particular it is not possible to use this two operators to construct

long operators dual to non point-like semiclassical strings.
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The natural way to think of the mesonic operator is in terms of the quiver diagram

drawn on a two–torus, as suggested by the connection between dimers and toric geome-

try [48, 49] . The point is that any toric quiver can be drawn on a torus in such a way

to provide a polygonalization of the torus. The quiver diagram is precisely the dual di-

agram of the dimer model. Each face is surrounded by bifundamental fields going either

in the clockwise or in the counterclockwise direction, and precisely corresponds to a su-

perpotential term. For the toric phases of Yp,q quivers there are only cubic and quartic

superpotential terms, so all the faces are triangles or squares. The torus has one ’short’

homology cycle and one ’long’ homology cycle.

In this picture, the generators of the Yp,q chiral ring are as follows:

• S0 is the only chiral operator that does not wind around any homology cycle of the

torus.

• S± wind around the short homology cycle, in opposite directions.

• L± wind around the long homology cycle. The value of the z–spin counts the winding

number around the short homology cycle.

In all cases we analyzed, we find that the values of the two commuting U(1)F charges

(that are always present) are counted precisely by the two winding numbers of the operator.

This is actually valid for any mesonic operator, not just BPS ones. We expect this to

be a generic property of toric quivers. A consistency check is that, since all terms in

the superpotential (which correspond to the faces of the quiver diagram) have zero flavor

charge, the total charge of an operator corresponding to a given path in the periodic quiver,

depend only on the initial and final points of the path and not on the particular path we

take. Clearly, the winding numbers have the same property.

Of course the generators of the chiral ring we found satisfy various non linear relations.

Studying these relations, it should be possible to reconstruct the algebro-geometric descrip-

tion of the Yp,q Calabi-Yau cones. Instead of doing this, we will reconstruct the transverse

geometry through the analysis of semiclassical holomorphic operators, in section 5. This

will give also information about the metric.

3.2 The full mesonic chiral ring

We now want to consider ’multiloop’ operators. First of all we see what happens multiplying

two S. An operator like

tr(UiViY2i+2UiViY2i+2) ∼ tr(UiViY2i+2UiY2i+3Vi+1) (3.11)

transforms in the ⊗41/2 = 2 ⊕ . . . and can be seen simply as the product of two short

mesons S. It is easy to convince that this is general: any chiral operator that does not

wind all the way around the quiver is of the form Sn and transforms in the spin–n of

SU(2). In other words, BPS operators do not carry a position on the quiver, and always

transform in the maximal possible SU(2)-irrep.
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Consider now the product of L+ and L−. This product,which winds 0 times around

the quiver, can be expressed in terms of the S operators.

L+L− ∼ tr(. . . UV U Y Y U . . .) ∼ tr(. . . UV Y UY U . . .) (3.12)

where we used the equation of motion for V . We thus see that the resulting operator is

the product of various Ss. More precisely

L+L− ∼ Sp (3.13)

Note that this relation is consistent with the charge assignments of table 3.

We are now in the position of giving the classification of the mesonic chiral BPS

operators of the Y p,q quivers. A general operator O can be seen as the product of S and

L:

Os, l = SsLl (3.14)

Where we denote L = L+ and L−1 = L−. s is a non-negative integer, while the integer l

can be positive of negative. The R–charge of Os,l is given by

QR[Os, l] = 2s + p|l| + l

(

q − 1

3`

)

(3.15)

while the flavor charge

QF [Os, l] = p l (3.16)

Finally, Os, l transforms in the irreducible SU(2)-representation with spin J

J [Os, l] = s + |l|p
2

+ l
q

2
(3.17)

Again, the precise form of these operators can be obtained by a complete symmetriza-

tion over the quiver (imposed by U - and V -fields F-terms) and over the SU(2) indices

(imposed by Y - and Z-fields F-terms). A complete symmetrization over the trace is also

to be performed.

3.3 BPS geodesics from the quivers

The operators corresponding to point-like strings moving along a null BPS geodesic are

chiral primaries and therefore should be among the ones we just described. In this section

we make the mapping precise and compare with the results of section 2.1.

Before doing so note that, heuristically, we can understand that these operators cor-

respond to point-like strings because, due to the complete symmetrization imposed by

F-term relations, the three values of the U(1)3 charges are constant along the operator,

for long operators and in a sense made precise later when we study a coherent state rep-

resentation of the operator (see eqs. (5.6) and (5.7)). There we also see that we can get

non-BPS operators by tuning continuously, along the operator, the ratio l/s, corresponding

to the value of the U(1)F charge and the z-component of the SU(2), corresponding to the

difference between the number of A1-fields and the number of A2-fields (Aα stands for Uα

or V α.) The R-charge is determined in term of l and s by the relation 3.15.

– 16 –



J
H
E
P
1
0
(
2
0
0
6
)
0
5
1

Going back to our main problem in this section, the first task is to reobtain, from the

field theory, the quantities y1,2 and ` (defined in (2.9)) that play an important role in the

supergravity background.

We start by writing the charges of a chiral operator made out of n+ operators L+, n−
L−’s and s operators S composed to maximum SU(2) spin J . The result is

QF = pn+ − pn− = pnα (3.18)

J = n+
p + q

2
+ n−

p − q

2
+ s =

1

2
(pn̄ + 2s) +

1

2
qnα (3.19)

QR = n+

(

p + q − 1

3`

)

+ n−

(

p − q +
1

3`

)

+ 2s = (pn̄ + 2s) +

(

q − 1

3`

)

nα (3.20)

where we introduced n̄ = n+ + n− and nα = n+ − n−. We see that we can use nα instead

of QF . Furthermore, n̄ and s appear only in the combination pn̄ + 2s which follows from

the fact that actually L+L− ∼ Sp in the chiral ring. This means that there are only two

independent numbers and therefore from (3.19) and (3.20) a relation between the charges

follows

QR − 2J = − 1

3`
nα (3.21)

So, `−1 has appeared as a natural unit for U(1)F charge. We can define two new variables:

Pα =
nα

`
, and y0 = − Pα

3QR
(3.22)

Therefore, in the field theory, y0 is the relation between U(1)F and R-charges for a given

operator. The range of y0 is determined by noticing that its minimum and maximum values

correspond to L+ and L− respectively, namely for n− = s = 0 and n+ = s = 0:

y0(L+) = − nα(L+)

3`QR(L+)
= y1 (3.23)

y0(L−) = − nα(L−)

3`QR(L−)
= y2 (3.24)

where we used the QR charges of L+ and L− from table 3. In this way we recover, from

the field theory, that

y1 ≤ y ≤ y2 (3.25)

If we rewrite now the charges (3.20) in terms of y0 we get perfect agreement with (2.32)

and (2.33):

J =
1

2
(1 − y0)QR, Pα = −3y0QR (3.26)

We have therefore identified the chiral operators with massless geodesics. Particular ex-

amples are: an operator made out only of L+ with the geodesic at y0 = y1, one made out

only of L− with the geodesic at y0 = y2 and one made out of equal number of L+ and L−
with the geodesic at y0 = 0.
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4. The field theory at λ → 0 g1

g
2

Figure 1: Space of cou-

plings for the conifold field

theory with no superpoten-

tial. The conformal mani-

fold is indicated.

Since BPS operators are protected, the matching between chiral

primary operators and massless geodesics is valid at generic

points on the conformal surface of the Yp,q quivers. The SU(2)

invariant points on the conformal manifolds are parametrized

by two complex parameters8. On the string side [39, 61, 68],

these parameters are the complex dilaton (gs) and the vev of the

B-fields (RR and NSNS) on the 2-cycle present in the manifold

S2 × S3.

On the string side we further considered a set of string

states described by the effective action of section 2.2. Since

these states are not BPS the effective action is valid only in the

regime gs ¿ 1 (to ignore string loops) and small curvature, namely λ = (R/ls)
1
4 = gsN À

1.

In the case of N = 4 this effective action can be compared to a similar action derived

from the field theory in the opposite regime λ ¿ 1 (which can also be interpreted as taking

gs to zero keeping N fixed and large). In our case, since the effective action is proportional

to λ, a naive extrapolation to λ small suggests that, in that regime, the result might be

interpreted as a small perturbation around a point with λ = 0. If such a point exists

(actually should be a line) it is special since all the semiclassical operators described by

the reduced action would satisfy ∆ = 3/2QR.

In the case of N = 4 SYM (and orbifolds thereof), this point is the free theory.

In the case of the conifold [55] there is a line of conformal fixed points with vanishing

superpotential which is part of the conformal manifold. Having W = 0 implies that all

chiral operators are chiral primaries, or BPS, operators; in other words the chiral ring is

much bigger on this line, depicted in figure 1. This means that this particular line should

be identified with the λ = 0 point as suggested in [69] where the BMN limit of the conifold

was studied. Notice that the gauge couplings are not zero which precludes doing standard

perturbation theory. Rather, one should do conformal perturbation theory on a marginal

perturbation given by the quartic superpotential. As a last preliminary example, for the

Y2,0 quiver in the “single impurities phase”, this W = 0 conformal line has an enhanced

chiral ring and a global symmetry SU(2)4. What is interesting here is that one can Seiberg

dualize [70] this phase with W = 0, obtaining a special line on the “double impurity

phase” [68]; in this dual description there are the standard Seiberg Mqq̃ superpotential

terms, so the superpotential does not vanish. We conclude that λ = 0 on the string side is

not, in general, equivalent to W = 0 on the gauge side.

We can now consider a generic Yp,q quiver. In this case the superpotential has cubic

and quartic terms. Since there are several terms in the superpotential we do not expect

to be able to cancel all of them since we can only vary two parameters on the conformal

surface. If only gauge couplings are turned on, the conformal dimension decreases and

we can never get to the conformal manifold where for example the V -fields have R-charge

8In [55] a description of the full conformal manifold is given.
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larger than 2/39. We conclude that, at least for the toric phases, there is no point on the

conformal manifold with vanishing superpotential.

In fact this problem was studied in [71], where it is pointed out that, if a IR conformal

manifold exists10, it is sufficient that one gauge group is asymptotically free in order to

be able to flow from the free theory to the conformal manifold but, in order to reach this

point, the superpotential couplings are crucial. For the Yp,q models, the flow has been

qualitatively described in [55]: one flows at first the NF = 2NC nodes, then some cubic

superpotential terms and so on.

We can actually go further by using an idea of Kutasov [72], that can be thought

of as extending the a-maximization procedure of Intriligator and Wecht [45] away from

the conformal manifold. In our case this consists in introducing 2p Lagrange multipliers

λi=1...2p, one for each gauge group, and µk=1...p+q, one for each term in the superpotential.

We can define a as:

a = 3tr(R − 1)3 − tr(R − 1) −
∑

i

λi (tr(εi(R − 1)) + 2) +
∑

k

µk(tr(νkR) − 2) (4.1)

where εi is a diagonal matrix in the space of fields which is 1 or 0 if the corresponding

field is charged or not with respect to the i-gauge group. The same for νk which is 1 or 0

if the field appears or not in the k-th term in the superpotential. If we maximize a with

respect to the R-charges they become functions of the Lagrange multipliers (λi, µk). It

was further argued in [72] that the Lagrange multipliers can be used to parameterize the

space of couplings. Although the relation between the couplings and the multipliers is still

somewhat conjectural, one thing is clear: a coupling is zero if and only if the corresponding

Lagrange multipliers is zero, since the corresponding constraint has not to be imposed. We

want to see now if, on the conformal surface, we can make some of the Lagrange multipliers

to vanish. Since we are on the conformal surfaces we have to impose anomaly cancellation

conditions. After that one can see, working in specific examples, that one can put some

quartic terms in the superpotential to zero. (Here we are also using that all Lagrange

multipliers are positive in the physical region of the couplings).

We can now understand the superpotential corresponding to λ = 0. Decreasing λ, all

the couplings (taken in their absolute value) decrease. At some point a coupling becomes

zero. This coupling has thus to correspond to a quartic term in the superpotential.

Having a vanishing superpotential coupling generates a change in the chiral ring of

the theory but it is not obvious that the holomorphic long operators corresponding to the

semiclassical strings of section 2.2 become protected. To see that we focus on an example,

Y4,3, which should clarify the general structure.

Consider the operator L+ in the Y4,3 quiver.

L+ = tr(ZUV UV UV U) (4.2)

To be chiral primary, namely not a descendant, L+ has to transform in the spin-7/2

representation of SU(2), as follows from using the F-term relation of the Y -field entering

in the cubic terms. If we multiply two L+ operators, for W4 6= 0, we saw in section 3.2

9The presence of fields with QR ≥ 2/3 follows, directly, from the presence of nodes with NF = 3NC .
10This is not the case for a generic N = 1 quiver theory.
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that we get an operator that transform in the spin-7 representation (with 15 states), of the

form

tr(Z UV UV UV U Z UV UV UV U) (4.3)

If W4 = 0, however, there are more than 15 states. The reason is that one cannot use

the F-term relations coming form the quartic terms to move the SU(2) spins from the

first UV UV UV U block to the second UV UV UV U block. More generally, operators of the

form (L+)n contain a number of states that grows as 8n if W4 = 0 and as 8n if W4 6= 0.

It is also possible to see that the spin-1 S operator gets enhanced to spin-(1 ⊕ 0). This

S operator with J = 0 generates an exactly marginal deformation, which is precisely the

conformal line parameterized by gs.

What happens is thus that, at W4 = 0, the chiral ring

Y4 3

Figure 2: Quiver diagram corre-

sponding to Y4,3.

is much larger which leads us to identify this point with

λ = 0 although it is not true that all chiral operators are

in the chiral ring.

We consider now semiclassical operators at the W4 =

0 point. Let us focus for simplicity on operators of the

form (L+)n. These correspond to semiclassical strings

moving only on the round two-sphere, satisfying y(σ, τ) =

y1. A class of operators of the form (L+)n is as follows:

tr

(

n
∏

i=1

R(θi, φi)L+

)

(4.4)

where R(θi, φi) is an SU(2) rotation applied to L+ (which has maximum z-spin Pφ). Taking

n to be large, and the angles (θi, φi) which parameterize the rotation to vary smoothly

with i, we see that we are constructing a semiclassical string extended along the S2 sphere

parameterized by (θ, φ). This is similar to what happens in the SU(2) sector of N = 4

operators [18]. Reconstructing the directions y and β is more involved and can be recovered

from the results the next section (naively, the absence of the F-term relations coming from

W4 implies that one cannot exchange L+ with L−). We just emphasize that the important

point here is that a generic operator like (4.4), at W4 = 0, is BPS, and satisfies the relation

∆ = 3/2QR.

5. Effective action for the spin chain

In the previous sections we studied conformal primaries and compared them to the massless

geodesics in the metric. As we just discussed, going further is difficult since the theories

are strongly coupled and we cannot use a perturbative expansion to compute anomalous

dimensions. In principle, as argued in the previous section, we should use conformal per-

turbation theory around a conformal point where some terms in the superpotential vanish.

Instead of doing that, to simplify the problem, we are going to consider all terms of the

superpotential on equal footing and extract a simple spin chain model that captures the

generic features of the operator mixing that the superpotential produces. Even then we are
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going to simplify the problem further. From the point of view of the resulting spin chain

what we are doing is trying to obtain the correct long distance physics so we expect that

the microscopic details should not be important.

Using coherent states we obtain an effective action for the spin chain which is similar

to the one we derived from string theory, namely eq. (2.53) albeit with a different function

p(y).

We analyze first the case of Y3,2 which should make clear the generic case we discuss

afterwards.

5.1 Long paths in the Y3,2 quiver

The quiver corresponding to Y3,2 is depicted in figure 3. Gauge invariant operators corre-

spond to closed paths in the quiver. An example is the outer counterclockwise loop that

we called L+. Other important example is the operator L−. It is a linear combination

(with equal coefficients) of the three paths depicted in the figure and can be written as:

L(3,2)
− =

1√
3

[tr(YqUY Y ) + tr(YqY UY ) + tr(YqY Y U)] (5.1)

Here, for clarity, we denoted as Yq the operator Y that appears in the quartic superpotential

term tr(UYqUZ). We see that L− is a mix of three operators where the operator U moves

between three possible positions among the Y ’s. This mixing comes from the cubic vertices

of the superpotential as can be seen in the example of figure 4. The mixing matrix induced

by these vertices is proportional to

H = h







−1 1 0

1 −2 1

0 1 −1






(5.2)

The off-diagonal terms correspond to the mixing. The diagonal terms come also from the

superpotential. They have opposite sign due to the relative sign between different terms

in the superpotential and one is double of the others since, for that state, the U has two

neighboring Y ’s. Instead, when the U is between Yq and Y only the Y counts since there is

no term in the superpotential involving U and Yq (and no Z). We wrote the mixing matrix

as H since one can think of it as a Hamiltonian whose eigenvalues are the conformal

dimensions. In this case we find the eigenvector 1√
3
(1, 1, 1) with eigenvalue zero which

is precisely L−. The constant h denotes the superpotential couplings (and other factors

appearing in the computation) and therefore cannot be taken to be small in general. This

implies that to obtain the correct spin chain Hamiltonian one should use non perturbative

techniques that sum all the diagrams. What is clear is that 1√
3
(1, 1, 1) is always a ground

state, since it is a protected operator.

Now we should investigate what happens for more generic operators, namely to all

possible closed loops in the quiver. These loops form a basis in a Hilbert space. In such

space we can define a Hamiltonian that converts a given path in a linear combination of all

paths that can be obtained from it by using the “moves” of the type described in figure 4.

– 21 –



J
H
E
P
1
0
(
2
0
0
6
)
0
5
1

1 1

11

2 2

22

3 3

33

4 4

44

5 5

5 5

6

66

6

Figure 3: Quiver diagram corresponding to Y3,2. We show, on the top left, the path L+. The

other three paths are those whose symmetric linear combination is L
−

.

U

U

Y

YV

F
V

. . . Y      U  . . .

. . . U      Y . . .

1

2

3 4

5

6

Figure 4: The superpotential generates mixing among the chiral operators, namely the closed

paths in the quiver. Diagrams as the one shown on the right give mixing between paths that differ

by the “move” shown on the left: 324 ↔ 342. Here FV denotes the F component of the chiral field

V . The other moves are: 423 ↔ 453, 534 ↔ 564, 6125 ↔ 645, 231 ↔ 2561.

In fact, to understand the dynamics of the paths it is better to plot the quiver in a

plane where the two axis give the angular momentum J and U(1)F charge QF . In figure 5

we can see such a plot. Each point is a vertex of the quiver and the operators U , V , Y and
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6 1

2

3

4

5

6 1

3 5 2 4 6

4 6 1 3 55

5 2 4 66 1

6 1 3 55 2

2 4 66 1 3

3 55 2 4

P

1/2

−1

J

α

Figure 5: It is convenient to draw the quiver on a plane. The horizontal axis corresponds to the

Pα charge in `−1 units and the vertical axis to the total J (assuming that we compose the operators

to maximum SU(2) spin). The “moves” that convert one path into another are now very simple

as exemplified in the figure where the solid path can take alternative routes depicted with dashed

lines according to the “moves” 564 → 534 and 645 → 6125.

Z are the arrows plotted according to the J and QF of each operator (see table 1). The

diagram is infinite but periodic as is clear from the labels of the vertices. A closed path in

the quiver is given here by an open path where the initial and end points should have the

same label. The difference in the coordinates of the initial and final point determine the

charges of the operator. This representation is similar to the doubly periodic representation

of toric quivers dual to the dimer picture. However it is adapted to the fact that here we

have an SU(2) global symmetry. In the general case, with only the toric U(1)×U(1) flavor

symmetry, the U(1) charges of each bifundamental fields in the torus representation are in

correspondence with the direction of the field.

After trying different paths it is easy to see that although individual jumps can be done

in several directions, in average, the slope of a path lies between the one corresponding

to L− and L+. Also, for chiral primaries, this can be seen by parameterizing the slope in

terms of y as in 3.26,
J

Pα
= − 1

6y
+

1

6
(5.3)

We know, from the analysis of the previous section that, in the field theory (as in the string

side) one has y1 < y < y2. So, in this case, the limit in the slopes that we mentioned is the

same as (3.25).
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A simplification appears when we consider how the moves that determine the Hamilto-

nian are represented in this diagram. It is easy to see (as exemplified in figure 5) that they

simply correspond to moving the path across the polygons or faces in the diagram. For

example we can convert . . . 564 . . . into . . . 534 . . . etc. In this way we can get from a given

path all paths that join the two given vertices. In such moves, the number of operators is

not conserved but the R-charge is and therefore we can use the R-charge as a measure of

the length.

One other thing to take into account is that not all moves have same weight, since

they correspond to different terms in the superpotential. In particular, moving the path

across a shadowed region in figure 5 requires the use of the quartic superpotential and

therefore it is suppressed at the points with W4 ' 0. This also shows that at this point

there are semiclassical operators with a non trivial y(σ) satisfying ∆ = 3/2QR, similar to

eq. (4.4). However, if we want to study very long paths, namely very large R-charge, we

can take a limit where the paths become continuous and the details of the diagram are

irrelevant.What remains is the fact that there is a maximum and minimum slope for the

paths. The Hamiltonian acting on a path produces infinitesimal deformations weighted by

an effective coupling that vanishes at the special points with W4 = 0. Each path can be

described (up to reparametrizations) by the slope as a function of σ, the coordinate along

the path. We associate the slope to the variable y. Since this is configuration space, in the

classical limit we need also a momentum conjugate to y that turns out to be the angle β.

Furthermore, each portion of path has an angular momentum ∆J = 1
2 (1 − y)∆QR which

can be oriented in a direction parameterized by two angles (θ, φ). In this way we see that

each path is determined by four variables function of σ. Therefore, the path itself becomes

the string that we found on the string side!

To be more precise we have to compute the action for these paths as determined by

the Hamiltonian.

One can consider a related, discrete model, where the paths have the same properties

and therefore should be described by the same long distance physics (long distance in the

sense of the paths). The model is depicted in figure 6. We consider the lattice formed

by the dashed lines which are parallel to the directions determined by L+ and L−. The

parallel lines are one unit of R-charge from each other. Consider the points A, B and C

lying in a line of equal R-charge. From the origin to the points A (or B) there is only one

path corresponding to a chiral primary operator. However, to a point such as C there are

many path that should be entangled. The Hamiltonian is taken to be the one that moves

a path across one parallelogram.

More precisely, if we describe the paths as a succession of two “effective operators”

with charges

L1 : QR = 1, J1 = 1
2 (1 − y1), P

(1)
α = −3y1

L2 : QR = 1, J2 = 1
2 (1 − y2), P

(2)
α = −3y2

(5.4)

the Hamiltonian can be written as

H = heff.

L
∑

i=1

(1 − Pii+1) (5.5)
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L −

L +

J

Pα

A

B

C

Figure 6: Effective description of the lattice in figure 5. We tile the wedge where paths are

contained by parallelograms whose sides carry one unit of R-charge. In this way lines of constant

R-charge are such as ACB. The moves are similar as in the other case. For example the twos path

shown are connected by applying four moves and therefore mix under renormalization.

where Pii+1 is the permutation operator between neighboring sites11. The identity is in-

cluded so that we do not get corrections to operators made out only of L1’s (or L2’s). The

coefficient heff. is an effective coupling that should be computed by matching to the de-

scription in the quiver. The Hamiltonian permutes L1L2 into L2L1 which moves the path

across the lattice in a similar way as happens in the quiver. heff. is small when W4 ' 0,

since without one quartic coupling one cannot permute L1 and L2.

In the continuum limit the paths in this lattice are continuous paths such that the

slope is contained between the ones of L1 and L2 and the Hamiltonian moves such paths

around. Since the continuum description is the same we expect that this simplified model

is described by the same effective action as the one in the quiver.

Perhaps a more detailed analysis can be desirable but we do not expect that changes

this simple picture.

We can now analyze the operators constructed out of L1 and L2. However at this

point it is clear that we can repeat the discussion for any Yp,q quiver and the result will be

the same except with different values of y1 and y2. So we proceed now to the generic case.

5.2 Closed paths in Yp,q

In the previous subsection we argued that long operators in the quiver can be modeled by

operators constructed out of the two effective operators defined in eq. (5.4) with Hamilto-

nian (5.5). We now want to derive a classical action that describe the dynamics of these

paths in the limit in which they are very long.

11Similar expressions are familiar in the N = 4 case [11, 73]
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At first sight, such paths seem equivalent to a Heisenberg model if we associate e.g.

L1 to spin up and L2 to spin down. However we should remember that L1 and L2 also

carry SU(2) spin (given by J1 and J2) and therefore we need two angles to describe their

orientation. Nevertheless in deriving the classical action it is clear that we can apply the

same coherent state techniques that are useful in the Heisenberg model.

Following the method of coherent states, we are going to consider operators of the type

|O〉 =

QR
∏

i=1

|Oi〉 (5.6)

where we used |O〉 to denote an operator to emphasize that we also consider it as a state of

a physical system. Also, QR is the length, namely R-charge of the operator since we chose

elementary jumps each with a unit R-charge. The operators Oi are defined as a linear

combination of L1 and L2:

Oi =

2
∑

a=1

ρiae
iP

(a)
α αiU(θi, φi, ψi)La (5.7)

Here we took L1 and L2 to have maximum projection in the direction S3 of SU(2) and

then applied a rotation U(θi, φi, ψi) parameterized by three Euler angles θi,φi,ψi. These

angles are slowly varying with i which implies that the total SU(2) spin is not maximal and

therefore the operator is not primary. One other point is that since Pα as defined in (3.22)

is quantized in units of `−1 the range of variation of α is 0 ≤ α ≤ 2π` in agreement

with (2.6).

The coefficients ρa determine the relative weight between L1 and L2 and therefore

correspond to the slope of a particular piece of the path. They have to satisfy the conditions

ρ2
1 + ρ2

2 = 1, y1ρ
2
1 + y2ρ

2
2 = y (5.8)

In fact this can be taken as the definition of y as the mean value of the slopes y1 and y2.

It implies that J and Pα are given by

J = J1ρ
2
1 + J2ρ

2
2 =

1

2
(1 − y) (5.9)

Pα = P (1)
α ρ2

1 + P (2)
α ρ2

2 = −3y (5.10)

which are by now familiar expressions (if we remember that QR = 1 for this effective

operators). In terms of y we can write ρ1 and ρ2 as

ρ2
1 =

y2 − y

y2 − y1
, ρ2

2 =
y − y1

y2 − y1
(5.11)

Here y should also be consider to be a slowly varying function of i.

Finally the angle αi determines the relative phase in the linear combination and, in

the coherent state action turns out to be the canonical conjugate of the variable yi.

Since a global phase is irrelevant there is a redundancy between ψ and α that we are

going to resolve later by an appropriate “gauge choice”.
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The classical action for the coherent states is given by

S =

∫

dτ Im〈O| ∂

∂τ
|O〉 −

∫

dτ〈O|H|O〉 (5.12)

where the Hamiltonian was given in eq. (5.5). Its mean value is:

〈O|H|O〉 =

L=QR
∑

i=1

(

1 − |〈Oi|Oi+1〉|2
)

(5.13)

where we identified the legth L of the chain with the total R-charge QR. It can be computed

in the continuum limit in an expansion in derivatives. Up to second order it gives, after a

somewhat lengthy but simple computation:

〈O|H|O〉 =
1

2

∫ QR

0
dσ

{ 2
∑

a=1

(∂σρa)
2 + 〈(D(a)

σ α)2〉 − 〈D(a)
σ α〉2 (5.14)

+
2

∑

a=1

ρ2
aJa

(

(∂σθ)2 + sin2 θ∂σφ2
)

}

(5.15)

where, for brevity we defined

D(a)
σ α = P (a)

α ∂σα + Ja (∂σψ + cos θ∂σφ) (5.16)

and 〈. . .〉 denotes average in the sense 〈ξa〉 = ρ2
1ξ1 + ρ2

2ξ2.

Doing the change of variables

α =
1

6`
(β − ψ) (5.17)

we obtain that

D(a)
σ α =

P
(a)
α

6`
(∂σβ + cos θ∂σφ) +

1

2
(∂σψ + cos θ∂σφ) (5.18)

We see now explicitly the redundancy between ψ and α (or β and ψ now). We can fix this

ambiguity by choosing

∂σψ + cos θ∂σφ = y (∂σβ + cos θ∂σφ) (5.19)

to agree with eq. (2.51). We can therefore write

D(a)
σ α = (

P
(a)
α

6
+

1

2
y) (∂σβ + cos θ∂σφ) (5.20)

We can now compute

〈D(a)
σ α〉 =

2
∑

a=1

ρ2
a(

P
(a)
α

6
+

1

2
y) (∂σβ + cos θ∂σφ) = 0 (5.21)
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and

〈(D(a)
σ α)2〉 =

2
∑

a=1

ρ2
a(

P
(a)
α

6
+

1

2
y)2 (∂σβ + cos θ∂σφ)2 =

1

4
(y − y1)(y2 − y) (∂σβ + cos θ∂σφ)2

(5.22)

which together with
2

∑

a=1

ρ2
aJa =

1

2
(1 − y) (5.23)

completes the evaluation of 〈O|H|O〉. Replacing in the action we get

S =
QR

2π

∫

dτdσ

[

1

2
∂τψ − 1

2
y∂τβ +

1

2
(1 − y) cos θ∂τφ

]

(5.24)

+
πheff.
2QR

∫

dτdσ

{

(1 − y)
[

(∂σθ)2 + sin2θ (∂σφ)2
]

(5.25)

− (∂σy)2

(y2 − y)(y − y1)
+ (y − y1)(y2 − y) (∂σβ + cos θ∂σφ)2

}

(5.26)

where we also computed the Wess-Zumino term using similar methods and 0 ≤ σ ≤ 2π.

Comparing with (2.53) one has to identify heff. with λ. We see that there is agreement,

except that the function p(y) is different. The function p(y) that we obtained also vanishes

at y = y1 and y = y2 and can be consider as a first approximation to the actual p(y).

However, it should be noted that the metric of the five dimensional manifold is singular

since, as observed in section 2, to avoid a conical singularity, we need p′(y1,2) = ±2y1,2

which this p(y) does not satisfy.

It is clear that the rest, namely the dependence in the angles, is largely determined

by symmetry so the partial agreement does not seem like a big accomplishment. However

the purpose here was to derive this action directly from the field theory without reference

to the AdS/CFT correspondence. From that point of view it is not even clear that such

action should exist and the mere fact that one can find a string representation for these

operators in the field theory should be considered as a check of the relation between strings

and gauge theories. Moreover it is plausible that in the infrared of the world sheet this

model flows to the one derived from the string side. We leave this problem for future work.

It would also be nice to apply this procedure to other examples, as the ones discussed

in [74].

One final point is that we can find again a local Kähler potential for this model of the

form

K = −
{

1 − y1

y2 − y1
ln |y − y1| +

1 − y2

y1 − y2
ln |y2 − y|

}

(5.27)

with complex coordinates

z1 = sin(
θ

2
) e−i 1

2
(β−φ)

(

y2 − y

y − y1

)
1
2
(y2−y1)

(5.28)

z2 = cos(
θ

2
) e−i 1

2
(β+φ)

(

y2 − y

y − y1

)
1
2
(y2−y1)

(5.29)
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6. More general operators

In the string analysis we found massless BPS geodesics which we mapped to chiral primary

operators. After that we extended the result to certain excited strings which gave chiral

operators which for large R-charge QR have anomalous dimensions (∆ − 3/2QR) of order
λ

Q2
R

, where λ is the string tension.

Now we want to extend the discussion to massless strings moving along non-BPS

geodesics. As seen in section 2, in that case the conformal dimensions do not depend on

λ at least in the region of large λ in which the results are valid. This suggests that these

operators might be protected, namely, their conformal dimension do not depend on the

point of the conformal manifold where they are computed. As a particular case one can

consider geodesics which move close to a BPS geodesic or large R-charge QR. As we show

below, the conformal dimension ∆ of the corresponding near BPS operators behaves as

∆ = 3
2QR + δ∆ + O

(

1
QR

)

where δ∆ is of order 1 in an expansion for large R-charge. In

the limit of large λ, δ∆ is independent of λ since ∆ is. A more conservative point of view

is to suggest that only the first correction δ∆ is protected. In the rest of the section we

find a description of the corresponding operators and leave further consideration about the

dependence on λ for future study.

Notice that this problem is absent in the N = 4 case since there all massless geodesics

in the S5 are protected. The discussion is therefore closer to what was discussed for the

T 1,1 background in [75, 76] through an analysis of the Laplacian and in [69] in terms of the

Penrose limit.

Before starting, however, let us recall that there are more protected short operators

than the chiral primaries (namely those annihilated by D̄). These are the conserved cur-

rents, which are annihilated by D̄2 and D2 and thus satisfy shortening conditions as well.

Their conformal dimension is independent of the coupling, but for them ∆ 6= 3
2QR.

In general, our analysis leads to a proposal for the structure of the generic scalar

operators (built out of the bifundamental fields) dual to supergravity states. The scaling

dimension of these operators should thus be independent of the conformal couplings, at

least in the large N limit. For these operators we are able to provide the 3 Abelian charges,

but not the precise scaling dimension. It would be interesting to macth the counting of

these states from the gauge theory and the gravity point of view, performing an analysis

of the Laplacian spectrum on the Yp,q.12

6.1 Protected building blocks

We consider in this subsection the building blocks, or ’minimal’ operators. Let us start

from a simple, well known, example. In the special case of the conifold, which is also Y1,0,

minimal operators are quadratic in the bifundamental fields. More precisely, all bilinear

gauge invariant operators (except the Konishi operator) of the conifold field theory are

protected, and can be recognized as 4 chiral operators of the form tr(AB), 4 antichiral

12Note added: after this work appeared, some properties of the general Laplacian spectrum for the Yp,qs

have been studied in [77].
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operators tr(B̄Ā), and 7 real operators, tr(AĀ + B̄B), that are part of supermultiplets

containing the conserved currents of the global non–R symmetry SU(2)×SU(2)×U(1)B .

For general p and q, the simplest protected operators satisfying ∆ > 3/2QR are, as

above, conserved currents, that are easy to describe. The global symmetries of the Yp,q

quivers are SU(2) × U(1)F × U(1)B × U(1)R, so there are six conserved currents, whose

dimension on the full conformal manifold is 3. For the non-R symmetries, these currents

are part of real multiplets K, quadratic in the bifundamental fields, satisfying the condition

D2K = D̄2K = 0 (6.1)

and can be easily written down explicitly, using table 1

KI
SU(2) =

∑

i=1

σI
αβ(Uα

i Ūβ
i + V α

i V̄ β
i+1) (6.2)

KF =
∑

i=1

(ZiZ̄i − YiȲi + V 1
i V̄ 1

i+1 + V 2
i V̄ 2

i+1) (6.3)

(The baryonic current has a very similar structure). These protected operators have van-

ishing values for QR and QF , their scaling dimension ∆ is 2. The SU(2)-current has J = 1,

so there is one operator with vanishing spin-z: Pϕ = 0.

Also here we see a generic feature of toric superconformal quivers: there are always

two uncharged flavor currents, corresponding to the two non–R U(1) isometries of the toric

Sasaki–Einstein manifold. In the case of the Yp,q this generic isometry is enhanced to

SU(2) × U(1)F , and there are two more length–2 protected operators. This is precisely

analog to the situation of section 3.1, note indeed that the two currents K± wind around

the short homology cycle of the torus.

Up to now we exhibited a class of operators satisfying a shortening condition, that are

thus protected by the superconformal algebra. Their BPS conditions are very well known

in 4D superconformal field theories. Now we propose an extension of this class.

Let us start from the long chiral operator L+, of the form UV UV UV UZUZU . . ..

Now substitute a piece UV , or V U , or UZU , with the ’nearby’ antichiral operator Ȳ and

symmetrize this ’impurity’ all over the quiver. To be explicit, in the case of Y4,3, one passes

from

L+ = tr(UV UV UV UZ) (6.4)

to

Ȳ UV UV UZ + UȲ V UV UZ + UV Ȳ UV UZ + (6.5)

UV UȲ V UZ + UV UV Ȳ UZ + UV UV UȲ Z + V UV UV Ȳ (6.6)

Notice that this new operator is not BPS. It is clear that it is minimal, the only way to

have a gauge invariant operator is to take one single trace.

Our proposal is that, if the position of the impurity, or ’shortcut’, is symmetrized over

the quiver and the SU(2) spin J is taken to be the largest possible, these are precisely the

operators that correspond to single particle AdS5 supergravity states, and should thus be
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Meson spin J QF QR ∆

S 1 0 2 3

KF 0 0 0 2

KSU(2) 1 0 0 2

L+,n
p+q
2 − n +p p + q − 1

3`
− 2n ?

Table 4: Charge assignments for some more general building blocks. The first three lines satisfy

shortening conditions.

protected at least in the large N limit. It should be possible to see their duals by studying

the scalar Laplacian on the Yp,q manifolds, as has been done for Y1,0 in [75, 76].

This new operator can be thought of as L+ ’divided’ by the short chiral loop SI and

multiplied by the conserved current KF . So the R–charge is QR[L+] − 2, the total spin is

J [L+] − 1, while QF does not change.

It should be clear now how to add more ’shortcuts’ to our original BPS operator L+,

and generalize it to L+,n, where n is the number of shortcuts. In order to have a protected

operator one has to fully symmetrize over the positions of the impurities and take the

maximal SU(2) spin. The values of the 3 commuting U(1) charges simply adds, while the

scaling dimensions, that we are not able to determine, should depend non linearly on n

(for q < p).

In the case of L−the length of the operators, the values of J and QR can increase or

decrease: one can replace a piece UYc with a V̄ , or a Yq with a piece Ū Z̄Ū .

A similar procedure can be applied to the antichiral versions of L±. It is non trivial

that in this way one can interpolate between chiral and antichiral operators.

In table 4 we give a list of the operators discussed.

Let us emphasize again that we don’t have a field theoretical proof of the fact that the

operators we discussed are protected. We can however check that in the case of q = p and

q = 0 this is actually the case.

For p = q (the quiver becomes an orbifold of the N = 4 SYM), it is easy to verify that

our set of operators are precisely the orbifold descendant of the well known 1/2 BPS chiral

primaries of N = 4 SYM (notice indeed the 1/2 BPS operators in N = 4 SYM are more

than the chiral operator of a chosen N = 1 parameterization).

Also in the case of p = 0 (the quiver becomes an orbifold of the conifold) the set of

operators we proposed fits the set of protected operators of the mother theory, that are

known from the spectrum of the scalar Laplacian on the conifold [75, 76].

6.2 Near BPS massless geodesics

In the previous subsection we proposed a set of minimal protected operators significantly

larger than the set of minimal BPS operators. With these building blocks one can construct

a lot of long operators. As for the BPS case, one has to symmetrize the impurities all over

the quiver and all over the trace, and take the maximal SU(2) spin. We can use all the
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minimal operators, both the conserved currents and the L±,n operators. Notice that these

symmetrizations imply that the operators are not localized in a particular point of the

quiver. This has to be the case if one wants to compare with the geometry: for instance,

taking orbifolds the quivers become bigger, while the number of supergravity states does

not increase at all.

Taking the limit of long operators one finds operators with constant densities of the

three U(1) charges (because of the symmetrizations), so the operators corresponds to non

BPS geodesics.

From the gauge theory side, it is clear how to find the values of the 3 commuting U(1)

charges, while we do not know what is the precise value of the scaling dimensions ∆. We

can however give a quantitative treatment in the case of a small number of excitations

around a long BPS operator. Let us consider a BPS geodesic with QF > 0 and add one,

symmetrized, impurity. We want to understand the change in the scaling dimension ∆.

For p = q it is obvious that, since the length of the operator decreases by 1 unit, δ∆ = −1.

For p = 0 the length of the operator changes by 2 units, and we know from [69] that,

in the limit of infinite length, δ∆ = −1. This can be obtained from the formulas for the

Laplacian on T 1,1 [75], taking the limit of large R–charge with a fixed number of ’impurities’

or ’shortcuts’ [69]. Imposing monotonicity in q for δ∆, one concludes that for any q the

change in the scaling dimension induced by one symmetrized shortcut is precisely −1.

In the limit of operators of infinite length, satisfying a near BPS condition, we can

thus find the scaling dimensions of our operators. (Note that this is similar to the BMN

limit, but much simpler, since we are sticking to operators symmetrized over the trace.)

We can thus proceed and consider all the various oscillations leading from a BPS

geodesic to a near BPS geodesic. All these impurities do not wind around the quiver, so

the value of QF does not change.

• Adding or removing a chiral S operator simply changes a little bit the position of the

geodesic (y0 and θ0 values). This gives δ∆ = ±3, δQR = ±2, δJ = ±1.

• Adding a KF current gives δ∆ = 2, δQR = 0, δJ = 0.

• Adding a KSU(2) current gives δ∆ = 2, δQR = 0, δJ = 1.

• Adding a ’shortcut’ gives δ∆ = ±1, δQR = ±2, δJ = ±1, 0.

Notice that the addition of a shortcut can be thought of as a combination of a removal of

a S and an addition of a K, or viceversa.

6.2.1 Near BPS massless geodesics from the geometries

Now we want to study deviations from the BPS geodesics, namely when ∆ > 3
2 QR. We

recall eq. (2.28):

∆2 =

(

3

2
QR

)2

+
1

6p(y)
(Pα + 3 y QR)2 + 6p(y)P 2

y +
6

1 − y

(

J2 − P 2
ψ

)

(6.7)
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Appropriately quantizing this Hamiltonian is equivalent to solving the Laplacian operator

on the Yp,q manifolds. Here we study small perturbations around a BPS geodesic. There

are two non trivial perturbations, one leading to J > Pψ and one to Py 6= 0.

In the first case (J > Pψ) we have

∆δ∆ =
6

1 − y0
JδJ = 3QRδJ = 2∆δJ, ⇒ δ∆ = 2δJ (6.8)

where we used the relations (2.32) and (2.33) valid for the unperturbed geodesic.

In the second case (Py 6= 0) we perturb y away form the minimum y = y0 + δy and get

a Hamiltonian for the perturbation

H =
1

2
∆2 =

1

2

(

3

2
QR

)2

+
1

2

[

6p(y0)P 2
δy +

3Q2
R

2p(y0)
δy2

]

(6.9)

This is a standard harmonic oscillator with mass m = 1
6p(y0) and angular frequency

ω = 3QR. This means that there are classical geodesics that oscillate in the y direction

around the BPS one. From the worldsheet point of view, these oscillations should be

quantized. This leads to

∆2 =

(

3

2
QR

)2

+ 2nω (6.10)

For a small variation we therefore get

∆δ∆ = nω, ⇒ δ∆ =
ω

∆
n =

3QR

∆
n = 2n (6.11)

To summarize, we found two non trivial types of perturbations characterized by:

I) δ∆ = 2n δQR = 0 δPα = 0 δJ = n

II) δ∆ = 2n δQR = 0 δPα = 0 δJ = 0
(6.12)

It is straightforward to see that combining these fluctuations with BPS fluctuations, that

do not change ∆ − 3/2QR, one gets precisely the fluctuations found on the quiver side.

7. Conclusions

We have described the computation of a set of chiral primary operators in the Yp,q quiver

gauge theories. Those operators were successfully matched to massless geodesics in the

corresponding supergravity backgrounds. The matching gives the interpretation of the

coordinate y in the bulk as the ratio between the U(1)F charge and the R-charge of an

operator (precisely Pα = −3yQR). From the analysis of the operators one can find the

maximum and minimum values of such ratio. They agree precisely with y2 and y1 as

expected from the bulk. Small fluctuation around the BPS geodesics were identified with

the insertion of conserved currents associated with the global charges.

After that we analyzed very long operators. Such operators correspond to long loops

in the quiver. The matrix of anomalous dimensions, induced by the superpotential has a

simple description in term of moves that convert one path into another. Diagonalizing the
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matrix of anomalous dimensions reduces to the study of the dynamics of such paths. We

constructed a simple model which we argued has the same behavior for long paths, namely

in the continuum limit. Using the coherent state method we obtained a classical action

which is similar but not the same as the one obtained from a limit of the string action. We

suggest that in the infrared limit (in the sense of the spin chain) the action we found flows

to the one from the bulk but we leave that point for future investigation.

In any case it is encouraging that in these more complicated cases the string action

can be reproduced at least in part by an analysis of the operators in the gauge theory.
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A. Useful formulas

Throughout the paper we used various relations that do not belong to any specific section.

We decide to collect them here in the hope that can be useful to reproduce some of the

calculations. The definitions of the functions and constant involved can be found in the

main text.

Relating f, q, w:

f(y) − 1

6
=

2

3

y

w(y)
(A.1)

1 − y + 6yf(y) = q(y) (A.2)

Relating y1,2,3 to p, q:

y2 − y1 =
3q

2p
(A.3)

p ` =
y1 − y2

6y1y2
= − q

4py1y2
(A.4)

QR(L+) = − 1

3y1`
=

2py2

y2 − y1
(A.5)

QR(L−) =
1

3y2`
= − 2py1

y2 − y1
(A.6)

y1 + y2 + y3 =
3

2
(A.7)

y1y2 + y1y3 + y2y3 = 0 ⇒ 1

y1
+

1

y2
+

1

y3
= 0 (A.8)
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